Harokopio University of Athens

Enabling System Models Automated Evaluation through Cross-Concept Information Utilization

George-Dimitrios Kapos

IEEE 9th International Conference on Research Challenges in RCIS 2015 Information Science, May 13-15 2015, Athens, Greece

Outline

- Introduction
- Motivation
- Aim Objectives
- Proposed Methodology & Framework Specs
- Application with DEVS
- Contribution
- Further & Future Work

Systems are All Around Us

Systems Development Process

- Development Process of a Single System
 - Diverse activities
 - Many stakeholders with different concerns
 - Different tools support different activities
 - Different ways to specify system information

The V-model of the systems engineering process, from Clarus Concept of Operations. Publication No. FHWA-JPO-05-072, Federal Highway Administration (FHWA), 2005

Model-Based System Engineering

- Model-Based System Engineering (MBSE)
 - A single model throughout the whole process
 - Diverse pieces of information (requirements and specifications) are combined as distinct views
 - Seamless transition to the next phase
 - Lowers cost of changes to preceding activities
 - A comprehensive perspective of the system is developed and is available at any time

Systems Modeling Language

- Systems Modeling Language (SysML)
 - OMG standard
 - A UML profile
 - Supported by UML modeling tools
 - Usable in standards-based model management tools

UML 2

not required by SysML **SysML**

UML reused by SysML

(UML4SysML)

SysML'S extensions to UML

OBJECT MANAGEMENT GROUP

SysML

• With SysML

- Information regarding the systems is defined in an open and standards-based manner
- But some activities are not supported inherently, e.g. simulation of system models

Motivation

- Simulation of system models is **crucial**
 - It may provide information that would be conceived several phases later
 - Requirements verification can be facilitated
 - Huge amounts of resources can be reserved compared to discovering system deficiencies later
- Valuable information in the system model:
 - must be located, complemented with additional info (e.g. performance attributes) and transformed

Motivation

- Simulation of SysML models has been addressed, but:
 - Generation of simulation code is not fully automated
 - There is dependence on proprietary solutions
 - They are applicable in specific domains
 - They are coupled with specific simulators
 - Simulation results are not available in the system model

Related Work

Table 1: Criteria satisfaction (full \checkmark , partial O or no \checkmark) of related work

Aspect	CASSI	SLIM	MARTE	TTool	SysML4Modelica
Systems Oriented (SysML)	1	~	0	~	~
Open (Non pro- prietary)	×	×	~	0	~
Domain Indepen- dent	×	~	×	×	~
Simulator Inde- pendent	×	~	×	×	×
Automated Simu- lation Execution	0	×	×	~	~
Incorporation of simulation results	×	×	×	×	×

Utilize the System Model

Identify Useful Information

Add Behavioral Information

Combine to Form Simulation Model

Simulation Results Feedback

Enable Automated Requirements Verification (System Model)

Principles that Add Value

Aim

- Enhance system model evaluation by:
 - proposing a methodology for automated simulation of SysML models that can be applied across different domains
 - specifying corresponding implementation frameworks that may deliver such enhancements imposing minimum restrictions (specific tools & solutions)

Research Methodology: Design Science

Objectives

- A methodology that should:
 - be generic regarding
 - the domain of application
 - the simulator used
 - the representation of information
 - deliver increased reliability of simulation results
 - simplify and reinforce system model evaluation
 avoid incremental simulation code development
 minimize tools used by the user
 - enable requirements verification in the modeling tool

Objectives

- Specifications for frameworks that should:
 - support full automation in the generation of simulation code
 - have minimum dependence on proprietary solutions
 - support incorporation of simulation results in the system model

Proposed Methodology

- 1. **Design:** System model with adequate description of structure and behavior
- 2. **Transformation:** The system model is automatically transformed into an executable simulation model
- 3. Simulation Execution: Simulation is executed, producing results
- 4. **Results Import:** Simulation results are imported into predefined parts of the system model.
- 5. Evaluation: Automated requirements verification or evaluation by the designer

Proposed Methodology

Proposed Methodology

- Simplicity:
 - The designer only:
 - defines the system model
 - is aware of simulation results
- System-Simulation model correspondence:
 - The executable simulation model is generated automatically
 - User errors are avoided and transformation errors can be identified

Framework Specifications

• Requirements & Principles:

- Mechanisms that ensure that information required for simulation is specified correctly
- High-level representations for simulation approaches
- High-level transformations of system models to simulation models
- Minimum commitment to proprietary solutions

Framework Specifications

Simulation Profile

- The simulation profile extends SysML with:
 - stereotypes, to enable annotation of system model elements
 - tagged values, to provide placeholders for:
 - simulation-related information
 - simulation results
 - constraints, to check that a valid, executable simulation model can be created

Framework Specifications

Meta-models

• The simulation meta-model:

- is defined in terms of a solid meta-meta-modeling infrastructure (MOF), just like SysML
- provides a simulator-independent model definition language that can be used in different simulators of a simulation approach
- The results meta-model provides the means to define simulation results

Framework Specifications

Transformations

- The system to simulation transformation:
 - locates simulation-related information
 - combines it with specific parts of the rest of the system model (e.g. model structure, interconnections)
 - generates the simulation model according to the simulation meta-model
 - is defined in terms of a transformation language that is aware of the meta-modeling infrastructure (MOF): Query/View/Transformation (QVT)

Transformations

- The results to system transformation:
 - o imports simulation results in the system model
 - is defined in terms of a transformation language that is aware of the meta-modeling infrastructure (MOF)

QVT Transformation

QVT provides

- High-level transformation concepts, equivalent to system & simulation meta-models (MOF)
- Clear, distinct representation of:
 - Source model elements
 - Corresponding target model elements
 - Preconditions & postconditions
- Syntactic correctness of simulation models
- Preconditions to utilize transformation evaluation techniques (standard transformation language)

Application Guidelines

- Construct a simulation-specific profile to enrich system models with simulation capabilities
- Select/define a simulation meta-model
- Compare system and simulation model elements and create a transformation
- Adapt a simulator to support simulation model execution, if not available

A Framework for DEVS

- A framework for simulating SysML models with DEVS has been implemented:
 - SysML profile for DEVS
 - DEVS meta-model
 - SysML to DEVS QVT-R transformation
 - Adapter to enable DEVS models execution in the DEVSJava/XLSC simulator

DEVSys Framework

SysML Profile for DEVS

SysML to DEVS

- Correspondences are identified
- They are defined as QVT relations

Evaluation

• DEVSys has been tested in:

- Small-scale models (<15 elements), where system behavior was defined in the system model
- Medium-scale Enterprise Information Systems models (<500 elements), where DEVS Java simulation library components were used
- Further testing on medium and large scale models

Evaluation

- Analyze:
 - correspondence between the profile, the simulation meta-model and the transformation
 - properties of the transformation (correctness, completeness, termination)
- Study performance of transformation depending on:
 - number of system model nodes
 - number of associations
 - number of relations

Contribution

- A generic methodology for automated simulation of SysML models has been proposed
 - Systems engineers focus on the system model
 - Design
 - Simulation results
 - Consistency and correctness of simulation models
 - Enables automated requirements verification within the system model

Contribution

- Frameworks for the realization of the methodology have been specified
 - Based on and reinforcing interoperability
 - Simulation meta-models
 - Standards-based:
 - Support in diverse environments
 - Techniques for validation of combination of metamodels, profiles and transformations

Contribution

- The DEVSys framework has been implemented & tested for DEVS simulators
 - Feasibility
 - First evaluation results

Further & Future Work

- Extended evaluation in different domains (CPS) and large scale models
- Implement frameworks for other simulators
- Challenges in adopting an IoT perspective
- Compare implementations and derive common attributes
- Publish quantified evaluation results

Comments & Discussion

Publications: Conferences

- IEEE 9th International System of Systems Engineering Conference (IEEE SoSE 2014), Adelaide, Australia, 9-13
 June 2014, "Integrating Simulation Capabilities into SysML for Enterprise Information System Design", A.
 Tsadimas, G.-D. Kapos, V. Dalakas, M. Nikolaidou, D. Anagnostopoulos
- 8th Annual IEEE International Systems Conference (IEEE SysCon 2014), Ottawa, Canada, 31 March-3 April 2014, "Model-based System Engineering using SysML: Deriving Executable Simulation Models with QVT" (Best Student Paper Award Honorable Mention), G.-D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, D. Anagnostopoulos
- 7th International Conference on Systems of Systems Engineering (IEEE SOSE 2012), Genova, Italy, 16-19 July 2012, "Basic Guidelines for Simulating SysML Models: An Experience Report", M. Nikolaidou, G.-D. Kapos, V. Dalakas, D. Anagnostopoulos
- Third International Conference on Software Engineering Advances (ICSEA 2008), Sliema, Malta, 26-31 October 2008, "A SysML Profile for Classical DEVS Simulators", M. Nikolaidou, V. Dalakas, L. Mitsi, G.-D. Kapos, D. Anagnostopoulos

Journal & Book Chapter

- SIMULATION: Transactions of The Society for Modeling and Simulation International, SAGE Publications, Volume 90, Issue 6, June 2014, pages 717-744, "An Integrated Framework for Automated Simulation of SysML Models using DEVS", G.-D. Kapos, V. Dalakas, M. Nikolaidou, D. Anagnostopoulos
- Casas, Pau Fonseca i. "Formal Languages for Computer Simulation: Transdisciplinary Models and Applications." IGI Global, 2014. 1-458. Web. 1 Jul. 2013, Chapter "10. An Integrated Framework to Simulate SysML Models Using DEVS Simulators", G.-D. Kapos, V. Dalakas, M. Nikolaidou, D. Anagnostopoulos, (pages 305-332)