
A Collaborative Filtering Algorithm with Clustering

for Personalized Web Service Selection in Business

Processes

Dionisis Margaris, Panagiotis Georgiadis and

Costas Vassilakis

University of Athens, Greece

Department of Informatics and Telecommunications

Introduction

 Collaborative filtering exploits the known preferences of a group of users to

formulate recommendations or predictions of the unknown preferences for other

users.

 Collaborative filtering algorithms also handle complex items, which are described

using hierarchical tree structures containing rich semantic information that must

be taken into account in order to make accurate recommendations

 In contexts where items to be recommended are associated with QoS parameters

(e.g. services implementing parts of business processes), collaborative filtering

techniques must also take into account the items’ QoS parameters, so as to

generate recommendations tailored to the individual user needs.

 In order to support the efficient and scalable execution of collaborative filtering

algorithm, clustering techniques can be used

 Cluster formulation is typically performed in an offline fashion

DIT, UoA, Greece 2

Related Work

Personalized Web Service Selection in Business Processes

 An integrated framework for QoS-based adaptation and exception

resolution in WS-BPEL scenarios (Margaris et al.)
 Optimized recommendation based on QoS attributes

 Adapting WS-BPEL scenario execution using collaborative filtering

techniques (Margaris et al.)
 Optimized recommendation based on Collaborative Filtering

 An integrated framework for adapting WS-BPEL scenario execution using

QoS and collaborative filtering techniques (Margaris et al.)
 Optimized recommendation based on QoS attributes and Collaborative Filtering

Clustering

 Adapting Finding Groups in Data: an Introduction to Cluster Analysis

(Kaufman et al.)

 CLARA clustering algorithm and Silhouette coefficient

DIT, UoA, Greece 3

Service replacement candidates
 When a user requests a

recommendation / adaptation for

some service A, we can use any

service offering the same or more

specific functionality than A

 For instance, if a user requests a

“travel” service, we can use air

travel, sea travel or land travel

 However, if a user requests an “air

travel” service, we can use any air

travel service (including more

specialized ones e.g. helicopter

travel), but we cannot use sea travel

 To be able to determine the service

replacement candidates, we use a

tree structure representing service

hierarchies

DIT, UoA, Greece 4

Service hierarchies (or Semantic WS trees)

QoS Aspects And Definitions

 Typical QoS attributes

 Cost, Response Time, Availability, Reliability, Security, etc

 A business process invocation includes QoS specifications which

may designate (for each QoS attribute):
 An upper bound and a lower bound, specific to each task within the

business process

 A weight, which applies to all tasks within the business process

The specifications are defined via vectors, i.e.:

 MAX(taski) = (rtmax(taski), cmax(taski), avmax(taski)),

 MIN(taski) = (rtmin(taski), cmin(taski), avmin(taski)),

 W = (rtw, cw, avw), a single specification applying to all invocations

In this work, QoS attributes are normalized in the range [0, 10] and it is

arranged so that always “higher values are better”

 E.g. a service with cost=3 is more expensive than a service with cost=5

DIT, UoA, Greece 5

Collaborative filtering prerequisites (1/2)

 In collaborative filtering, we need metrics to quantify how

“similar” two users are

 In our context, instead of users we consider past executions

of the same business process:

DIT, UoA, Greece

exec Travel Hotel Drink

1 Swiss Hilton Heineken

2 Alitalia Hilton Heineken

3 Ryanair Hotel_1a Heineken

4 Alitalia Youth_Hostel Dom_Perignon

5 Ryanair Youth_Hostel Tap_Water

6 Budget_Travel Hotel_3B Tap_Water

7 Open_Seas Evian

past executions repository

Collaborative filtering prerequisites (2/2)

 Regarding the semantic dimension, we adopt the semantic similarity

distance metric between two services proposed in “A semantic

distance measure for matching web services” (Bramantoro et al.):

DIT, UoA, Greece

• C is a constant set to 8

• lw is the level weight for each path within the service hierarchy tree, and depends on the

depth of the tree.

• PathLength is the number of edges counted from service s1 to service s2 and

• NumDownDirection is the number of edges counted in the directed path between service

s1 and s2 and whose direction is towards a lower tree level.

ssim(s1,s2) = (C–lw*PathLength – NumDownDirection) / C

 To compute the distance between two executions, we combine the

distances between the individual services invoked in the context of the

executions

 The distance between the two services synthesizes the semantic distance dimension

and the QoS-based distance dimension.

QoS aspects prerequisites (1/2)

DIT, UoA, Greece

Service responseTime cost availability

Dewars 6 3 8

Heineken 7 8 7

Dom Perignon 6 1 9

Veen 5 2 9

Evian 8 5 8

Tap water 8 10 6

Hilton 7 2 7

Grand Resort 7 3 7

Youth_Hostel 5 9 5

Hotel_3B 5 8 5

Alitalia 8 7 4

AirFrance 8 6 9

Swiss 10 3 10

Ryanair 9 9 3

VIP_Buses 7 3 7

Budget_Travel 6 9 7

QoS values within the repository

QoS aspects prerequisites (2/2)

DIT, UoA, Greece

 Regarding the QoS-based distance dimension, the distance between two

services is computed using the Euclidean distance metric; in the

computation, each QoS dimension is weighted using the QoS attribute

weight specified for the current adaptation.

 The attributes values are normalized by dividing them with the maximum

value of the attribute within the corresponding category, in order to reflect

how close to the maximum value within the category the specific value is:

• q(si) denotes the value of QoS attribute q (c, av, rt) for service si,

• wq is the weight assigned to QoS attribute q

• qmax(cat(si)) is the maximum value present in the repository regarding QoS attribute q

under the category in which si is a direct child

𝑞𝑑𝑖𝑠𝑡 𝑠1, 𝑠2 =
𝑞 𝑠1

𝑞𝑚𝑎𝑥 (𝑐𝑎𝑡(𝑠1))
−

𝑞 𝑠2

𝑞𝑚𝑎𝑥 (𝑐𝑎𝑡(𝑠2))

2

∗ 𝑤𝑞

𝑞∈{𝑐𝑜𝑠𝑡 ,𝑎𝑣 ,𝑟𝑒𝑠𝑝𝑇𝑖𝑚𝑒 }

𝑞𝑠𝑖𝑚 𝑠1, 𝑠2 = 1 − 𝑞𝑑𝑖𝑠𝑡 𝑠1, 𝑠2 .

Overall Similarity Metric

DIT, UoA, Greece

Combining the semantic similarity with the QoS-based similarity, we

compute the overall similarity metric of two services which is:

The formula for computing the similarity between two past executions is then

shaped as (modified Sorensen Similarity Metric):

𝑠𝑖𝑚 𝑠1 , 𝑠2 = 𝑠𝑠𝑖𝑚 𝑠1, 𝑠2 ∗ 𝑞𝑠𝑖𝑚 𝑠1, 𝑠2

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑝𝑒1,𝑝𝑒2 =
2∗ 𝑠𝑖𝑚 𝑠1,𝑖 ,𝑠2,𝑖 𝑖

 𝑝𝑒1 +|𝑝𝑒2|

The CF adaptation algorithm

(1) Formulating a scenario-level functionality vector F=(f1, f2,…, fn), where each fi

corresponds to a functionality that is part of the current scenario

(2) For each functionality functi(request) for which a recommendation is requested,

the algorithm retrieves from the repository the rows (past scenario executions)

that have invoked a WS belonging to this category (being either the same node

or a descendant in the service hierarchy tree)

(3) The rows for which the QoS characteristics of service functi(row) do not satisfy

the bounds set through vectors MIN(functi) and MAX(functi) are dropped

(4) For each row retained, we compute its similarity with the current request

(5) The algorithm retains only the K-nearest neighbors, it groups the retained rows

by the value of the service implementing the functi(request) functionality and

computes the sum of the scores within each group.

(6) The service corresponding to the group having the greatest sum is then selected

to deliver the specific functionality in the context of the current execution.

DIT, UoA, Greece 11

Clustering

DIT, UoA, Greece 12

 A clustering technique is used for supporting the efficient and scalable

execution of proposed algorithm under the presence of large repositories of

sparse data

 The computation of the clusters is performed in an off-line fashion, and the

clustered repository is made available to the recommendation algorithm as

soon as the computation is complete; therefore, the performance of the

clustering technique does not penalize the recommendation process

 The cluster computation method uses the CLARA clustering algorithm

(“Adapting Finding Groups in Data: an Introduction to Cluster Analysis”,

Kaufman et al.) to formulate clusters

 Since the number of clusters K that will deliver the optimal clustering

performance is not however known a priori, the iterated local search

paradigm (“Iterated Local Search”, Lourenco et al.) is used to reduce the

search range for K, using the Silhouette coefficient (“Adapting Finding

Groups in Data: an Introduction to Cluster Analysis”, Kaufman et al.) as a

solution quality metric

The clustering algorithm

 The potential range of the optimal cluster number is determined as

 [] (“Multivariate Analysis”, Mardia et al.)

 We then extract the initial starting points of an iterated local search

procedure with logarithmic cardinality from the above range as follows:

 The distance between the starting points is set to

 The set of initial starting points is set to { }

 A hill climbing algorithm is executed for each point.

 The clusterings that have been produced by the execution of each hill

climbing procedure are collected, and the one having the greatest Silhouette

coefficient value is chosen.

DIT, UoA, Greece 13

The service recommendation algorithm

DIT, UoA, Greece 14

1. The adaptation algorithm formulates a task vector T=(t1, t2, …, tn), where

each ti corresponds to a task that is part of the business process

2. To retrieve the k-nearest neighbors (we have set k=50 using the results

from “Scalable collaborative filtering using cluster-based smoothing”, Xue et

al.), the similarity of the task vector T with the cluster medoids (each one

corresponds to a past execution) is initially computed.

3. The cluster with the highest similarity is selected and searched for past

executions that fulfill the criterion

4. If less than 50 recommenders are found, the search continues to the

remaining clusters, in descending order of similarity of the task vector T with

the cluster medoids.

15 15 DIT, UoA, Greece

Example (1/4)

15

“ I want to stay at Hilton Hotel, order Heineken from room

service and I want a recommendation for my air ticket

booking.

The recommended service’s cost must be over 4 and the

QoS weights are response time=10%, cost=70% and

reliability=20% ”

The task vector is instantiated to T=(Air Ticket, Hilton,

Heineken).

16 16 DIT, UoA, Greece

Example (2/4)

16

Usage patterns repository

exec Travel Hotel Drink

1 Swiss Hilton Heineken

2 Alitalia Hilton Heineken

3 Ryanair Hotel_1a Heineken

4 Alitalia Youth_Hostel Dom_Perignon

5 Ryanair Youth_Hostel Tap_Water

6 Budget_Travel Hotel_3B Tap_Water

7 Open_Seas Evian

Service rt c av

Dewars 6 3 8

Heineken 7 8 7

Dom Perignon 6 1 9

Veen 5 2 9

Evian 8 5 8

Tap water 8 10 6

Hilton 7 2 7

Grand Resort 7 3 7

Youth_Hostel 5 9 5

Hotel_3B 5 8 5

Alitalia 8 7 4

AirFrance 8 6 9

Swiss 10 3 10

Ryanair 9 9 3

VIP_Buses 7 3 7

Budget_Travel 6 9 7

Services’ QoS values

Example (3/4)

DIT, UoA, Greece 17

= 0.87 * 0.79 + 1.0 * 1.0 + 1.0 * 1.0 = 2.69

Example (4/4)

DIT, UoA, Greece 18

The similarity metrics, computed via the modified Sørensen similarity index,

between T and these rows are:

similarity(T, row2) = 2 * 2.69 / (3+3) = 0.896

similarity(T, row3) = 2 * 1.95 / (3+3) = 0.65

similarity(T, row4) = 2 *1.35/ (3+3) = 0.45

similarity(T, row5) = 2 *1.39/ (3+3) = 0.46

Rows 2 and 4 form one group corresponding to service Alitalia and achieving

an overall score of 1.346.

Rows 3 and 5 form a second group corresponding to service Ryanair with an

overall score of 1.11.

Thus, service Alitalia is selected to realize the AirTravel task in the context of

the current scenario execution.

Implementation and Performance

DIT, UoA, Greece 19

In the experiment we have varied the following parameters:

 the number of concurrent invocations

 the size of the past executions repository

 the number of functionalities in the scenario

 the number of recommendations requested

In all experiments, the semantic service repository was populated with synthetic data

having an overall size of 2.000 web services, for 20 different tasks, with each task

having 100 alternative providers.

The QoS attribute values in this repository were uniformly drawn from the domain [0,10].

Each unique performance evaluation test was run 100 times, and the average value was

computed and is shown in the following diagrams.

Performance (1/3)

DIT, UoA, Greece 20

Overhead imposed of the clustering (C) and the non-clustering (NC) algorithm respectively,

under various concurrency level, when the past execution repository contains 10K, 50K and

100K entries.

A business process with five tasks was used and one recommendation was requested, while the

remaining four tasks were explicitly bound to specific service implementations.

10

100

1000

10000

10 50 100 150 200

re
co

m
m

e
n

d
at

io
n

 f
o

rm
u

la
ti

o
n

 t
im

e
 (

m
s)

concurrent business processes executed

C-10K C-50K C-100K

NC-10K NC-50K NC-100K

Performance (2/3)

DIT, UoA, Greece 21

Overhead imposed to formulate the recommendation, when the number of tasks in the business

process varies, of the clustering (C) and the non-clustering (NC) algorithm respectively, when the

past execution repository contains 10K, 50K and 100K entries.

In these experiments, the concurrency level was set to one and for each business process a

single recommendation was requested.

0

50

100

150

200

250

300

350

5 6 7 8 9 10

re
co

m
m

en
da

ti
on

 fo
rm

ul
at

io
n

ti
m

e
(m

s)

tasks in business process

C-10K C-50K C-100K

NC-10K NC-50K NC-100K

Performance (3/3)

DIT, UoA, Greece 22

Overhead imposed to formulate the recommendation, when the number of recommendations

requested per business process varies, of the clustering (C) and the non-clustering (NC)

algorithm respectively, when the past execution repository contains 10K, 50K and 100K

entries.

In these experiments, a business process containing six tasks was used and the concurrency

level was set to one.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5

re
co

m
m

en
d

at
io

n
 fo

rm
u

la
ti

on
 t

im
e

(m
s)

#recommendations requested per business process

C-10K C-50K C-100K

NC-10K NC-50K NC-100K

23 23 DIT, UoA, Greece

Qualitative evaluation

The non-clustered algorithm produces recommendations having QoS in the range [87%,

100%] of the optimal ones (QoS-only) with an average equal to 93%, while the QoS of the

clustered algorithm’s recommendations fall in the range [84%, 100%] with an average of 90.9%.

The experiments show that the precision at position k metric for the algorithm ranges from

86% to 100% with an average of 94% (the clustering scheme achieves to retrieve, on average,

47 out of the 50 nearest neighbors to the current request).

23

0

1

2

3

4

5

6

7

8

9

10

In
st
1

In
st
2

In
st
3

In
st
4

In
st
5

In
st
6

In
st
7

In
st
8

In
st
9

In
st
10

A
V
G

Q
o

S
o

f
ad

ap
ta

ti
o

n

Trial business process

non-clustered clustered QoS-only random

DIT, UoA, Greece

Future Work
 Our future work will focus on considering incremental clustering

techniques such as BIRCH (“BIRCH: an efficient data clustering

method for very large databases”, Zhang et al.) etc.
 Incremental clustering will remove the need to construct the

clusters anew in order to accommodate the stream of new

execution traces into the past executions repository.

 Investigate the effect of the numlocal and maxneighbor

parameters of the CLARANS clustering algorithm. This will enable

the replacement of CLARA by CLARANS, which is desirable since

CLARANS is known to outperform CLARA both in execution time

and cluster quality

 Additionally, we plan to conduct a user survey, in order to

measure the degree to which users are satisfied by the

recommendations generated by adaptation algorithm.

24

Thank you for your attention!

Questions ?

DIT, UoA, Greece

THANK YOU!

DIT, UoA, Greece

