Using Collaborative Filtering to Enhance Domain-Independent CBR Recommender’s Personalization

Jihane KARIM
Matthieu MANCENY
Raja CHIKY
Michel MANAGO
Marie-Aude AUFAURE

IEEE RCIS’15 – Athens, Greece
Research Topic

- Due to the increasing competition and the e-users that are becoming more and more picky, the situation has never been more challenging for the e-commerce

- Integration of personalized recommendations to improve the user’s experience

Our goal:
- Generate recommendations as personalized as possible
- Design a domain-independent recommender system

Our solution:
- Case-Based Reasoning for contextualized recommendations
- Collaborative Filtering for more personalized recommendations
Outline

- Domain-Independent Recommender
 - Case-Based Reasoning
 - Related Work
 - Our Domain-Independent CBR Recommender

- Personalization of the Recommendations
 - Collaborative Filtering
 - Proposed Hybridization Strategy
 - Experimentation Results

- Conclusion

- Future Work
Domain-Independent Recommender
Case-Based Reasoning (CBR)

- Problem solving & active learning methodology
- Reuses previous similar experiences (Cases) to resolve a new problem
- Case=\langle Problem, Solution, Result \rangle
CBR for Recommendation

- Introduced to the recommendation field as a knowledge-based filtering technique

- In a recommendation scenario:
 - Problem = attributes of the request, environment and context knowledge, user profile
 - Solution = recommended item
 - Result = user’s feedback

- One remaining issue: **Domain dependence**
Related Work

- CBR tools and frameworks that facilitate the development of CBR applications (CBR*Tools, myCBR, jCOLIBRI)

- FIONN (D. Doyle & al. 2005): a framework allowing the exchange of structured data over CBR systems

- CBROnto (B. D´ıaz-Agudo & al. 2002): an ontology formalizing CBR solving methods as well as the required knowledge to apply them
Our Domain-Independent CBR Recommender

IEEE RCIS'15 -- Using Collaborative Filtering to Enhance Domain-Independent CBR Recommender's Personalization
Personalization of the Recommendations
Collaborative Filtering

- Based on the assumption that other users opinions can be aggregated to generate a reasonable prediction of the active user’s preference.

- Generally relies on the preferences history of the users to generate the recommendations ➔ Domain independent

- Matrix factorization techniques: perform better than traditional CF algorithms (Ref. works of Yehuda Koren)
 - We use an SVD-Based algorithm
Proposed Hybridization Strategy

\[S_{CF+CBR} = \frac{S_{CBR} + S_{CF}}{2} \]
Experimentation Results

- Basic recommendations scenario: Suggestion of restaurants taking into account the search criteria of the user

- Restaurants Data Set (Available online*)
 - 130 Restaurants
 - 21 nominal & numeric attributes
 - 1161 ratings
 - 138 users
 - Ratings scale: 0 (Bad) – 2 (Good)

* http://archive.ics.uci.edu/ml/datasets/Restaurant+%26+consumer+data
Experimentation Results

- Similarity Knowledge

- Case structure
Exemple of a user’s request
Experimentation Results

- Top-10 recommended items using the CBR recommender

<table>
<thead>
<tr>
<th>Id</th>
<th>Ambiance</th>
<th>Cuisine</th>
<th>Opening</th>
<th>City</th>
<th>Pkg</th>
<th>Payment</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>familiar</td>
<td>23</td>
<td>00:00 to 00:00</td>
<td>SLP</td>
<td>public</td>
<td>11</td>
<td>medium</td>
</tr>
<tr>
<td>2</td>
<td>familiar</td>
<td>23, 32</td>
<td>08:00 to 23:00</td>
<td>SLP</td>
<td>yes</td>
<td>11, 3, 4</td>
<td>medium</td>
</tr>
<tr>
<td>3</td>
<td>familiar</td>
<td>23</td>
<td>08:30 to 21:00</td>
<td>SLP</td>
<td>yes</td>
<td>11, 3, 4</td>
<td>medium</td>
</tr>
<tr>
<td>4</td>
<td>familiar</td>
<td>-</td>
<td>10:00 to 18:00</td>
<td>SLP</td>
<td>-</td>
<td>11</td>
<td>medium</td>
</tr>
<tr>
<td>5</td>
<td>familiar</td>
<td>-</td>
<td>09:00 to 21:00</td>
<td>SLP</td>
<td>-</td>
<td>11, 4, 3, 1</td>
<td>medium</td>
</tr>
<tr>
<td>6</td>
<td>familiar</td>
<td>-</td>
<td>08:30 to 19:30</td>
<td>SLP</td>
<td>-</td>
<td>11</td>
<td>medium</td>
</tr>
<tr>
<td>7</td>
<td>familiar</td>
<td>-</td>
<td>14:00 to 23:30</td>
<td>SLP</td>
<td>-</td>
<td>11, 4, 3</td>
<td>medium</td>
</tr>
<tr>
<td>8</td>
<td>familiar</td>
<td>-</td>
<td>07:00 to 23:00</td>
<td>SLP</td>
<td>yes</td>
<td>11</td>
<td>medium</td>
</tr>
<tr>
<td>9</td>
<td>familiar</td>
<td>-</td>
<td>00:00 to 23:30</td>
<td>SLP</td>
<td>yes</td>
<td>11</td>
<td>medium</td>
</tr>
<tr>
<td>10</td>
<td>familiar</td>
<td>23, 12, 33</td>
<td>11:00 to 22:00</td>
<td>SLP</td>
<td>yes</td>
<td>11, 3, 4</td>
<td>high</td>
</tr>
</tbody>
</table>
Experimentation Results

- Predicted ratings of the recommended items using collaborative filtering

<table>
<thead>
<tr>
<th>ID</th>
<th>Restaurant ID</th>
<th>Rating U1024</th>
<th>Rating U1134</th>
<th>Rating U1071</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>135085</td>
<td>1.10</td>
<td>2.0</td>
<td>1.72</td>
</tr>
<tr>
<td>2</td>
<td>135086</td>
<td>-</td>
<td>1.64</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>135046</td>
<td>1.17</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>135082</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>135033</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>135063</td>
<td>1.53</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>7</td>
<td>135081</td>
<td>1.28</td>
<td>-</td>
<td>0.88</td>
</tr>
<tr>
<td>8</td>
<td>135070</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>135062</td>
<td>1.57</td>
<td>1.61</td>
<td>1.55</td>
</tr>
<tr>
<td>10</td>
<td>135053</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Personalized recommendations using the hybrid recommender

<table>
<thead>
<tr>
<th></th>
<th>U1024</th>
<th></th>
<th>U1134</th>
<th></th>
<th>U1071</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hybrid</td>
<td>CBR rank</td>
<td>Hybrid</td>
<td>CBR rank</td>
<td>Hybrid</td>
<td>CBR rank</td>
</tr>
<tr>
<td>1</td>
<td>135063</td>
<td>6</td>
<td>135085</td>
<td>1</td>
<td>135085</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>135062</td>
<td>9</td>
<td>135046</td>
<td>3</td>
<td>135063</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>135081</td>
<td>7</td>
<td>135086</td>
<td>2</td>
<td>135062</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>135046</td>
<td>3</td>
<td>135062</td>
<td>9</td>
<td>135033</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>135085</td>
<td>1</td>
<td>135081</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- Domain-Independent Reasoning
- Easily adaptable to any recommendation scenario
- CBR retrieves the items that meet the user’s needs and context
- Collaborative Filtering re-orders the recommendations list based on the preferences history of the users
Future Work

- Recommendation of compound items by integrating the adaptation step of CBR
- Integration of collaborative filtering in the adaptation process to compose personalized items
- More thorough evaluation of the approaches using an adapted and consistent data set
- Distribution of the system to improve the execution performances
Using Collaborative Filtering to Enhance Domain-Independent CBR Recommender’s Personalization

http://www.mycoachnutrition.com
Thanks for your attention
Using Collaborative Filtering to Enhance Domain-Independent CBR Recommender’s Personalization

Jihane KARIM
Matthieu MANCENY
Raja CHIKY
Michel MANAGO
Marie-Aude AUFAURE

IEEE RCIS’15 – Athens, Greece