

Revealing properties of the bipartite structure of online social networks

Raphaël TACKX, Jean-loup GUILLAUME, Fabien TARISSAN

1

Context

- Complex networks studies :
 - Social networks
 - Biology
 - Neuron networks
 - Economy
- Fundamental properties :
 - Weak global density
 - Strong clustering
 - Average short distance
 - Heterogeneous degree distribution
 - Existence of communities
 - Assortativity or disassortativity
- Why study real-world networks ?

Unipartite VS bipartite graphs

- Some networks have a natural bipartite organisation
 - Movies-Actors
 - Peer-to-peer (Files-Users)
 - Authors-Publications

Our motivation

- Study of bipartite real-world networks
 - Extract fundamental properties
 - Better understand the structure and the features
- One of the issues : the overlaps

Example : LiveJournal dataset (groups / users)

UPMC In I SORBONNE UNIVERSITÉS

Metrics

• Clustering coefficient : $cc_{\top}(u,v) = \frac{|N_{\top}(u) \cap N_{\top}(v)|}{|N_{\top}(u) \cup N_{\top}(v)|}$

Metrics • Redundancy coefficient : $rc_{\top}(u) = \frac{|\{\{v, w\} \in N_{\top}(u)^2, \exists u' \neq u, (u', v) \in E, (u', w) \in E\}|}{\frac{|N_{\top}(u)| \cdot (|N_{\top}(u)| - 1)}{2}}$ G1 G2 G3 G1 G2 G3 U1 U1 U2 U2 U3 U3 $rc_{\top}(G2) = 0$ $rc_{\top}(G2) = \mathbf{1}$

New metrics

• Dispersion :

$$dispersion_{ op}(u) = rac{|N_{ op}(N_{ot}(u))|}{\sum_{v \in N_{ot}(u)} (|N_{ op}(v)| - 1)}$$

New metrics

• Monopoly :

$$monopoly_{ op}(u) = rac{\sum_{v \in N_{\perp}(u)} |N_{ op}(v)| = 1}{|N(u)|}$$

 $monopole_{\top}(G2)=0$

Our approach

- Empirical studies :
 - CiteULike : tags / publications
 - LiveJournal : groups / users
 - Wikipedia : categories / articles
 - Flickr : groups / users
- Nearly the same size :
 - ~ 350 000 T nodes (top)
 - ~ 1,5 million of \perp nodes (bottom)
- Questions :
 - Comparison between CC and RD
 - Contribution of the new metrics
 - Comparison with a random model

Results

Average values of CC and RD

	CITEULIKE	LIVEJOURNAL	WikiPedia	FLICKR
cc _{bip}	0.138	0.117	0.063	0.055
rd_{bip}	0.521	0.703	0.387	0.646

Distribution of CC and RD

Results

Correlation between degree/CC and degree/RD

Strong correlation for CC RD does not depend on the degree

Results

• Distribution of dispersion and monopoly

values

Very low monopolies

Conclusion and future work

- Conclusion
 - Online social networks present particularities
 - The overlap is not trivial
- Future work
 - Analysis of detected communities
 - Detection of communities in bipartite graph

Thanks !

Results : random model

- Configuration Model method
- Goal : compare with real data
 - Caracterize specific properties
 - Denote differences
 - Understand how the metrics react

C

Results : random model

Distribution of CC and RD

Results : random model

• Distribution of dispersion and monopoly

Results : random model

Correlation between degree/CC and degree/RC

